
1

An Agent-Based Interface to Terrestrial Ecological
Forecasting

Keith Golden Ramakrishna Nemani Wanlin Pang† Petr Votava‡ Oren Etzioni
NASA Ames Research Center University of Washington

MS 269-2 Box 352350
Moffett Field, CA 94035 Seattle, WA 98195-2350

{keith.golden | rama.nemani}@nasa.gov etzioni@cs.washington.edu
† QSS Group, Inc.

‡ California State University, Monterey Bay

Abstract— This paper describes a flexible agent-based eco-
logical forecasting system that combines multiple distributed
data sources and models to provide near-real-time answers to
questions about the state of the Earth system. We build on novel
techniques in automated constraint-based planning and natural
language interfaces to automatically generate data products
based on descriptions of the desired data products.

I. I NTRODUCTION

The latest generation of NASA Earth Observing System
(EOS)[1] satellites has brought a new dimension to con-
tinuous monitoring of the living part of the Earth System,
the biosphere. EOS data can now provide weekly global
measures of vegetation productivity and ocean chlorophyll,
and many related biophysical factors such as land cover
changes or snowmelt rates. However, the highest economic
value would come from forecasting impending conditions of
the biosphere, to allow decision makers to mitigate dangers
or exploit positive trends. NASA’s strategic plan for the Earth
Science Enterprise identifies ecological forecasting as a focus
for research. Ecological forecasting predicts the effects of
changes in the physical, chemical and biological environment
on ecosystem activity. Possible applications of such a system
include predicting shortfalls or bumper crops of agricultural
production, or West Nile virus epidemics or wildfire danger
in time to allow improved preparation and logistical efficiency.

Petabytes of remote sensing data are now available to
help measure, understand and forecast changes in the Earth
system, but using these data effectively can be surprisingly
hard. The volume and variety of data files and formats are
daunting. Simple data management activities, such as locating
and transferring files, changing file formats, gridding point
data, and scaling and reprojecting gridded data, can consume
far more personnel time and resources than the actual data
analysis. Some scientists commit to a particular data source
or resolution just because using anything different would be
more effort that it’s worth.

This project is supported by the NASA Earth Science REASoN program
(Research, Education, and Applications Solutions Network). Early support
was provided by the NASA CICT Intelligent Systems program.

Better tools can help, but most of the tools developed to
date are little more than shell scripts; they lack the flexibility
to meet the diverse needs of users and are difficult to extend
to handle changes in available data sources.

We are developing a more adaptable solution, based on au-
tomated constraint-based planning and a flexible component-
based architecture. Unlike script-based approaches, where the
instruction sequences for managing and processing data are
hand-coded, in our planner-based approach, the instruction
sequences are automatically generated based on user requests
and available data sources. New data sources, models or data-
processing programs can be added in a plug-and-play fashion,
and the planner can adapt to errors or data dropouts by trying
alternative ways of achieving the same goal, such as using
other, possibly lesser quality, data sources.

We have demonstrated this technology in the Terrestrial
Observation and Prediction System (TOPS), an ecological
forecasting system that assimilates data from Earth-orbiting
satellites and ground weather stations to model and forecast
conditions on the surface, such as soil moisture, vegetation
growth and plant stress. The planner identifies the appropriate
input files and sequences of operations needed to satisfy a data
request, executes those operations on a remote TOPS server,
and displays the results, quickly and reliably.

A. Overview

The architecture of the agent is described in Fig. 1. The
major components of this architecture can be executed on
different machines and communicate over the Internet, and
the execution of plans can also be distributed, to exploit the
intrinsic parallelism of dataflow plans. In the remainder of the
paper, we describe a few of the components of this architecture
in more detail:

• DPADL: Section II discusses the Data Processing Action
Description Language (DPADL) [2], which is used to
provide action descriptions of models, filters and other
programs as well as descriptions of available data sources.
Goals, in the form of data product requests, can also be
described in DPADL. DPADL is an expressive, declar-
ative language with Java-like syntax, which allows for
arbitrary constraints and embedded Java code.

2

DPADL

Parser

Database

Planner
(Doppler)

RMI Interface

JNET

Task
Manager

Executive

IMAGEbot

User Interface

NLI Web
Interface

Expert
UI

JDAF Core / TOPS

Web Services

TOPS Models & Filters TOPS
Database

Fig. 1. Agent Architecture

• User Interface: Section III discusses the user interface.
Although DPADL is a powerful, expressive language, it is
more appropriate for programmers than naive users. We
provide a simplified form-based Web interface to allow
users to submit typical requests. For more advanced use,
we are also developing a natural language interface (NLI),
which will allow complex data requests to be posed in an
intuitive manner.

• DoPPLER Planner: Section IV discusses the planner,
which accepts goals in the form of data descriptions
and synthesizes dataflow programs using the action de-
scriptions read in by the DPADL parser, consistent with
information stored in the database.

• JNET: Section V discusses the constraint solver, JNET,
which can handle numeric and symbolic constraints,
as well as constraints over strings and even arbitrary
Java objects. The latter are evaluated by executing the
code embedded in constraint definitions, specified in the
DPADL input file.

• JDAF: Section VI describes JDAF, a framework that
provides a common API for all TOPS data-processing
programs and models for ecosystem forecasting.

B. Ecological Forecasting

As a demonstration of our approach, we have applied our
agent, called IMAGEbot, to the Terrestrial Observation and
Prediction System (TOPS, http://www.forestry.umt.edu/ntsg/-
Projects/TOPS/), an ecological forecasting system that assimi-
lates data from Earth-orbiting satellites and ground weather
stations to model and forecast conditions on the surface,
such as soil moisture, vegetation growth and plant stress [3].
Prospective customers of TOPS include scientists, farmers
and land managers. With such a variety of customers and
data sources, there is a strong need for a flexible mechanism
for producing the desired data products for the customers,
taking into account the information needs of the customer,
data availability, deadlines, resource usage (some models take
many hours to execute) and constraints based on context (a
scientist with a palmtop computer in the field has different

Fig. 2. The IMAGEbot expert UI provides advanced capabilities for editing
and debugging models, filters and data sources (left panel and DPADL editor
window, not shown), inspecting and modifying dataflow plans (top panel),
and viewing the results of plan execution (bottom panel).

display requirements than when sitting at a desk). IMAGEbot
provides such a mechanism, accepting goals in the form of
descriptions of the desired data products.

The goal of the TOPS system is to monitor and predict
changes in key environmental variables. Early warnings of
potential changes in these variables, such as soil moisture,
snow pack, primary production and stream flow, could enhance
our ability to make better socio-economic decisions relating to
natural resource management and food production [4]. The ac-
curacy of such warnings depends on how well the past, present
and future conditions of the ecosystem are characterized.

The inputs needed by TOPS include:

• Fractional Photosynthetically Active Radiation (FPAR)
and Leaf Area Index (LAI)

• Temperatures (minimum, maximum and daylight aver-
age)

• Precipitation
• Solar Radiation
• Humidity

We have several potential candidate data sources at the
beginning of each model run. The basic properties of the
inputs are listed in Table I. The specific data inputs that are
selected will depend on goal constraints, such as requirements
on resolution or coverage or resource limits.

In addition to the attributes listed in the table, data sources
also vary in terms of quality and availability — some inputs are
not always available even though they should be. For example,
both the Terra and Aqua satellites have experienced technical
difficulties and data dropouts over periods ranging from a few
hours to several weeks. Depending on the data source, different
processing steps are needed to get the data into a common
format. We have to convert the point data (CPC and Snotel)

3

Source Variables Frequency Resolution Coverage
Terra-MODIS FPAR/LAI 1 day 1km, 500m, 250m global
Aqua-MODIS FPAR/LAI 1 day 1km, 500m, 250m global

AVHRR FPAR/LAI 10 day 1km global
SeaWIFS FPAR/LAI 1 day 1km x 4km global

DAO temp, precip, rad, humidity 1 day 1.25 deg x 1.0 deg global
RUC2 temp, precip, rad, humidity 1 hour 40 km USA
CPC temp, precip 1 day point data USA

Snotel temp, precip 1 day point data USA
GCIP radiation 1 day 1/2 deg continental

NEXRAD precipitation 1 day 4 km USA

TABLE I

TOPSINPUT DATA CHOICES

Fig. 3. The Terrestrial Observation and Prediction System (TOPS) generates
daily nowcasts of biospheric variables, such as Gross Primary Production
(GPP).

to grid data, and we must reproject grid data into a common
projection, subset the dataset from its original spatial extent
and populate the input grid used by the model. The data are
then run through the TOPS model, which generates desired
outputs.

II. DPADL

The Data Processing Action Description Language
(DPADL) [2] is a planning domain description language
specialized for data processing domains. It differs from
other domain description languages, such as PDDL [5] by
describing characteristics typical of data processing domains,
such as complex data structures, object creation and copying,
operations on large sets and integration of multiple software
systems.

DPADL differs from metadata languages such as the Earth
Science Markup Language (ESML) in that DPADL is used
to describe not only data, but the programs (models, filters,

etc.) that process data, with a sufficient level of detail that it
is possible to derive a DPADL description of the output of
a dataflow plan given the DPADL descriptions of the inputs
and the processing steps used to transform the inputs into
the outputs. More importantly, the process can be reversed:
given a DPADL description, it is possible to determine a set
of data sources and a sequence of data processing steps that
will produce a data product matching that description. That
is the basis of how the DoPPLER planner works: Given a
DPADL description of a requested data product (i.e., a goal),
the planner generates a sequence of data-processing steps (i.e.,
a plan) that will produce data matching the description (i.e.,
satisfying the goal).

Since it is used to describe goals as well as data and data-
processing components, DPADL may be viewed as the “power
user” interface to the planner, just as SQL provides a powerful
interface to a database. DPADL is, in fact, far more expressive
than SQL. However, just as most of us use databases on the
Web every day without ever typing an SQL query, we don’t
expect typical users to formulate their data product requests
using DPADL.

III. U SER INTERFACE

We are developing two alternative ways of submitting
data product requests. For naive users, we have developed a
simple form-based interface that allows users to select agoal
templateand instantiate that template with specific parameters
to customize the goal to their requirements. For example, we
have a template to display a false-color image of a selected
Earth-system variable. Parameters of the template include the
specific variable to display, the geographic region and the date
of interest. The goal template itself is simply a parameterized
DPADL goal, and the GUI form to customize it is generated
automatically from the parameters of the goal, but the user
needn’t know anything about that. Goal templates can be
fairly general, so just a handful of them can cover most the
data product requests that casual users are likely to submit.
However, the space of possible goals that can be specified by
this method is clearly limited, and this approach will not be
adequate for expert users.

Since expert users are likely to be scientists rather than pro-
grammers, requiring them to submit their data product requests
using DPADL is not realistic. Instead, we are developing a
natural language interface (NLI). Although it will still be less

4

expressive than DPADL itself, the NLI will allow users to pose
a much richer set of requests than any form-based GUI, but
without requiring them to learn a new language to do so. Our
NLI is based on Precise, a novel Natural Language Interface
for Databases (NLIDB) [6].

Precise takes English questions and maps them to the cor-
responding database queries, enabling scientists who are not
database programmers to formulate their queries in English.
Precise combines lexical constraints, syntactic constraints
from the English question, and semantic constraints from the
database to rapidly narrow down the possible interpretations of
a question. When multiple interpretations are possible, Precise
asks the user to clarify the intended interpretation. Precise
has two important properties that make it well suited for
this project: portability and reliability. Precise is not tied to
any particular database. Instead, it automatically generates its
lexicon based on the vocabulary used in the database, and
its semantic constraints are extracted from the schema of the
database.

As a result, it is convenient to port Precise for use on
a broad range of databases. Precise takes several steps to
ensure that it is reliable. In contrast with other systems, Precise
analyzes every word in the user’s question. In addition, when
it encounters ambiguity it refuses to settle for one of several
interpretations. Instead, it asks the user to clarify the question
in a manner that enables Precise to converge on the appropriate
database query.

We are in the process of adapting Precise to the task
of generating DPADL queries and we will develop simple
dialog strategies that help guide users towards clarifying their
information requests. This is essential to enable users familiar
with the Earth science domain but not familiar with the
technology to specify data requests with minimal training.

IV. D OPPLER PLANNER

Data processing has traditionally been automated by writing
shell scripts. There are some situations when scripts are the
best approach: namely, when the same procedure is to be
applied repeatedly on different inputs, the environment is fairly
stable and there are few choices to be made. However, in
many applications, including TOPS, none of these assumptions
holds. There are many different data products we would
like the system to produce, there are many inputs and data-
processing operations to choose from in producing those
products, and the availability of these inputs can change over
time. To address these challenges, we developed a planner,
called DoPPLER (Data Processing PLannER), to automate
data processing.

For our purposes, planning is a restricted form of automatic
program synthesis, in which a plan, typically a loop-free
sequence of actions, such as data-processing operations, is
generated in response to a goal, a set of conditions that
the plan must bring about. The goals DoPPLER accepts are
descriptions of desired data products, and the plans it generates
are dataflow programs, which produce the requested data.

A dataflow program is composed of data-processing oper-
ations, each of which can have multiple inputs and outputs,

lon
lat
lon
lat

45
-120
30
-80

ul

lr

s-var
res
proj

region
date

clouds
quality

FPAR
8km

LAZEA
.

1/1/04
.10
.90

TOPS Model

inputs fpar lai precip ...

outputs soilwgpp snow ...

s-var
res
proj

region
date

clouds
quality

LAI
8km

LAZEA
.

1/1/04
.10
.90

s-var
res
proj

region
date

quality

GPP
8km

LAZEA
.

1/1/04
.90

Fig. 4. Structured inputs and outputs to a TOPS model

in which outputs of one action can be connected to inputs of
another. Actions are eligible for execution as soon as their
inputs are available, and multiple actions can be executed
in parallel. This approach is well suited to supporting inter-
operability among even legacy systems, because the planner
can be used to connect these systems together in whatever
way needed to achieve a particular goal. All that is needed is
descriptions, in the form of planner actions, of the systems to
be integrated. The approach leads to a design that is modular
and evolvable, since any new component can be brought in
by providing only a description of that component. Similarly,
descriptions of individual components can be modified, and
descriptions can exist for different versions of components,
leading to a system that is maintainable. Libraries of such
descriptions, which we call domain libraries, can be distributed
along with the components they describe, leading to a plug-
and-play architecture.

There are significant differences between Earth Science data
processing and more traditional planning domains, which calls
for different techniques. Notable features of data processing
domains include large dynamic universes, large plans, incom-
plete information and uncertainty.

A. Decisions, decisions

As we discussed in Section I-B, we have a number of
inputs to choose from, which are applicable under different
circumstances. The data may come from several satellites,
ground stations, or as outputs from other models, forecasts
and simulations.

In addition to input choices, we also have several choices
of models to use with the data. As with the data, the models
produce results of various quality, resolution, and geographic
extent. Moreover, there may sometimes be significant trade-
offs in performance versus precision. An FPAR/LAI algorithm
provides a good example of this trade-off. We can produce
an FPAR/LAI pixel using either a lookup table or a radiative
transfer method[7]. In the case of a lookup table, we derive
a Normalized Difference Vegetation Index (NDVI) from two
surface reflectance channels by a means of a simple equation,
and than use the NDVI value together with its landcover value
as a key into a static lookup table that will give us the FPAR

5

and LAI values. The complexity of this algorithm is O(1). On
the other hand, we can use the radiative transfer method, which
contains a large number of intermediate computations and has
complexity O(nlogn). This fact, together with the number of
runs we may attempt, translates into a substantial difference in
user time, and while the radiative transfer method provides us
with good results, it is not suitable for more interactive or first-
pass applications, where the lookup table is sufficient. In these
first-pass applications, we are looking for large abnormalities
and deviations from long term normals, so high precision runs
do not necessarily provide us with better results.

Another reason for using different models at different times
is their possible regional character. Some models are highly
specialized and provide very good and precise results in only
certain parts of the world. This is partially due to the fact that
the scientists who develop these models have a great deal of
knowledge about specific geographic areas (Pacific Northwest,
the Amazons, etc.). They have collected large amounts of local
data over the years, and were able to develop models whose
outputs are highly accurate in these regions. We usually don’t
want to use these models when we are concerned with global
monitoring, but they are useful when we have identified an
important event occurring at the region where we have a very
accurate regional model.

B. Large dynamic universes

Over the last decade, great improvements have been made
in the efficiency of planning and scheduling algorithms, thanks
largely to the International Planning Competition and a corre-
sponding set of benchmark planning problems that make such
bake-offs possible. Unfortunately, this focus on benchmark
problems has resulted in planners that are specialized for
“puzzle problems,” which are very complex but nonetheless
quite small in terms of the number of objects that must be ma-
nipulated. Not only is the number of objects in these problems
small, it is completely known and unchanging. Data processing
domains are of a different character altogether. They are not as
complicated as the benchmark “puzzle problems,” but they can
be much larger, with thousands or millions of objects (such
as data files), which are generally impossible to identify in
advance. Furthermore, most actions create new objects, so
the universe is not even static. Inspection of the planning
problems from the Third International Planning Competition
(IPC3) reveals that even the hard problems typically have
fewer than 100 objects total. In contrast, if we consider a single
product from a single instrument (MODIS) on a single satellite
(say, Terra) for a single day, there are 288 tiles. To produce a
given data product, we may need to consider multiple products
from multiple instruments, residing on multiple satellites, and
multiple days’ worth of data.

Despite these differences, we would still like to benefit from
the progress that has been made in developing fast planning
algorithms, so we have adapted one of the principle techniques
for fast planning,planning graph analysis[8] to work in a
representation in which the objects cannot all be explicitly
specified in advance. We have developed a representation,
called a lifted planning graph(Fig. 5), in which variables

img.
colorValue

reproject scale mosaic

img=projOut im
g=

sc
ale

Out img=mosOut

rgbCompose gridhsvCompose

img=gridOut

im
g=

hs
vO

ut

img = rgbOut

img.
resolution

im
g=scaleO

ut

im
g=

mos
Out

pic.
resolution

mosIn=pic

sc
ale

In
=p

ic

table.
pointValue

gri
dIn

=ta
ble

bw.
grayValue

rg
bI

n=
bw

hsvIn=bw

col.
colorValue

pro
jIn

=c
ol scaleIn=col

mosIn=col

Fig. 5. Lifted planning graph with constraints

are used to represent sets of possible objects. A planning
graph (lifted or otherwise) is a layered graph representation
of a planning problem in which the first layer consists of all
conditions (represented in Fig. 5 using elliptical nodes) that
are true at the start, the second layer consists of all actions
(represented by rectangular nodes) whose preconditions are
satisfied by the conditions in the first layer, the third layer
consists of conditions that are enabled by the actions in the
second layer, and so on. The graph continues in this way, with
alternating condition and action layers, each layer providing
support for the next. The first level that a condition appears at
in the graph provides a lower bound on the number of steps
needed to achieve it. This lower bound proves to be a quite
useful distance estimate in heuristic search algorithms, such
as A*.

In a traditional planning graph, each action node corre-
sponds to a single ground action (i.e., an action with all its
parameters specified). For example, if thescale action takes
a single file as input and a single numerical value specifying
the scale factor, and if there are 5 input files and 5 possible
scale factors, then there will be 25 instances ofscale, one for
each pair of input file and scale factor. Of course, in practice
there will be many possible input files and infinitely many
possible scale factors, so the traditional approach doesn’t work.
In our lifted planning graph, we represent both the input file
and the scale factor using variables, so only one instance of
scale is needed. Then we useconstraintsto specify how these
variable depend on other variables in the planning graph. For
example, the size of the output ofscale is a product of the
size of the input and the scale factor. If the size of the output
is determined by constraints on the goal and the size of the
input is determined by the set of candidate images, then then
the set of possible scale factors can be determined. We have
developed a novel constraint propagation algorithm to perform
this sort of reasoning on a lifted planning graph.

V. CONSTRAINT REASONING

Constraints appear at all levels in data-processing domains.

• At the problem level, we have constraints on time and
resource consumption. For example, one of the objectives
of the TOPS system is to perform the complete processing
and analysis of data for a particular day no later than 8am
the following day. If we have an algorithm that runs for 10

6

Constraint Network

Runtime Environment (JVM)

Dataflow Plan

Fig. 6. Constraints in JNET can reference low-level objects and procedure
calls in Java Virutal Machine (JVM), providing the “glue” between a dataflow
plan and the runtime environment in which it is executed.

hours and we know that the last data for the current day
will be arriving around midnight, we cannot accomplish
the goal and we should consider another algorithm.

• At the file level, we can have constraints on size, quality,
etc. For example, we may not want to process files for
regions with more than 80% cloud cover. In this case, we
may have to use a different, and less cloudy, source of
data.

• At the pixel level, constraints may specify subsets of one
or more datasets. For example, we may want to process
data only for a certain country or region, or we may want
to run an algorithm only during certain time periods. We
may want to run the algorithm only on pixels of certain
underlying type; for example, only for broad-leaf forests.
Finally, during validation, we often compare satellite data
with ground measurements, and we are only interested in
specific points on the ground where we have validation
measurements.

In order to deal with the many constraints that arise in a
plan, we have developed a constraint reasoning system called
JNET. As we discussed, JNET supports a novel algorithm
for constraint propagation over lifted planning graphs. It also
supports a number of other novel features, including:

• Powerful support for constraints on strings [9], useful
for capturing the often complex file naming conventions
as constraints between file pathnames and other file
properties.

• Constraints over sets of objects [10].
• Constraints over complex structures, such as data struc-

tures (Fig. 4).
• Constraints over arbitrary Java objects, and defined in

terms of arbitrary Java code. These are useful providing
low-level integration between the planner and TOPS,
which is written in Java (Fig. 6).

VI. JAVA DISTRIBUTED APPLICATION FRAMEWORK

(JDAF)

In order to facilitate interoperation of the planner with
the Earth science processing algorithms, as well as general
extensibility and flexibility of the overall system, we have
implemented the Java Distributed Application Framework

(JDAF). Using this framework, we are able to easily integrate
existing algorithms written in several different languages (C,
C++, Fortran) into a complex application. While the algorithm
integration is an important feature of the system, there is a
provision for another integration, equally important — inte-
gration of the acquired data needed for the processing. There
has been an enormous increase in the data volume and the
number of data sources over the past several years, and while
some data are being duplicated (for example we can obtain
FPAR/LAI data from MODIS-Terra, MODIS-Aqua, AVHRR,
or MISR), they usually come in variety of formats ranging
from simple binary to HDF-EOS. The different data formats
often bring another complexity into the system integration
process, because the system will require new I/O modules
that can read these new formats. With these facts in mind, we
are building our framework in a way that accommodates both
data and algorithm fusion, so that we can add new algorithms
and new data streams seamlessly to the existing system while
minimizing the integration efforts.

Since most of the Earth science algorithms are written
in C or C++, we take advantage of Java Native Interface
(JNI) facilities provided by the standard Java distribution.
There is a single point of entry into and out of the native
code, and we only use the Java interface for parameter
passing between the processing algorithm and the rest of
the system. This leads to a very simple design and a fast
and efficient integration. On the Java side of the system,
we provide a set of common APIs, which are implemented
by each of the active objects (data pre-processing objects,
processing algorithms, data analyzers). This makes it simple
to form processing pipelines in a flexible manner, by either
an application programmer, or by the planner. The simplicity
of integration, flexibility, and fast deployment makes JDAF a
good candidate for prototyping of new algorithm processing
systems, competing with scripting languages such as Perl.
Even though scripts are very suitable for fast prototypes, JDAF
adds the flexibility and the distributed execution component
not often available in common scripting languages.

VII. R ELATED WORK

There has been little work in planner-based automation of
data processing. Two notable exceptions are Collage [11] and
MVP [12]. Both of these planners were designed to provide
assistance with data analysis tasks, in which a human was in
the loop, directing the planner. In contrast, the data processing
in TOPS must be entirely automated; there is simply too much
data for human interaction to be practical. Pegasus [13] is a
workflow planning system for computation grids, a problem
similar problem to ours, though their focus is on mapping pre-
specified workflows onto a specific grid environment, whereas
our focus is on generating the workflows.

Planning for data processing shares many characteristics
with planning for information integration and planner-based
software agents [14]. The primary difference is the need in
data-processing plans to reason about information that will
never be known to the agent but is nonetheless essential to
the task at hand — namely, the information contained in the
data files that the agent must process.

7

A number of frameworks have been developed for improv-
ing interoperability among different data systems, such as
the Earth System Modeling Framework [15] and the Earth
Science Markup Language [16]. What sets our work apart
is the use of planning and scheduling software to automate
the generation of data products based on user goals. Our
aim is not to establish a competing standard but to support
(and exploit) standards whenever they exist. For example, we
are using ESML libraries in JDAF and we intend to support
the translation between ESML metadata and DPADL data
descriptions. However, expecting all systems to converge on
a common standard is probably unrealistic. Our approach can
help bridge the gap between legacy systems and emerging
standards.

The EnVironmEnt for On-Board Processing (EVE) [17]
is an execution framework for data-processing plans to be
run on-board an Earth-orbiting satellite. Unlike IMAGEbot,
EVE provides no planning capabilities; plans are generated
by humans.

The Amphion system [18] was designed to construct pro-
grams consisting of calls to elements of a software library.
Amphion is supported by a first-order theorem prover. The task
of assembling a sequence of image processing commands is
similar to the task Amphion was designed to solve. However,
the underlying representation we use is a subset of first-order
logic, enabling the use of less powerful reasoning systems.
The planning problem we address is considerably easier than
general program synthesis in that action descriptions are not
expressive enough to describe arbitrary program elements,
and the plans themselves do not contain arbitrary loops or
conditionals.

REFERENCES

[1] M. King and R. Greenstone, “1999 EOS reference handbook, a guide to
NASA’s earth science enterprise and the earth observing system,” 1999.
http://eos.nasa.gov.

[2] K. Golden, “DPADL: An action language for data processing domains,”
in Proceedings of the 3rd NASA Intl. Planning and Scheduling workshop,
pp. 28–33, 2002. to appear.

[3] R. Nemani, P. Votava, J. Roads, M. White, P. Thornton, and J. Coughlan,
“Terrestrial observation and prediction system: Integration of satellite
and surface weather observations with ecosystem models,” inPro-
ceedings of the 2002 International Geoscience and Remote Sensing
Symposium (IGARSS), 2002.

[4] R. Nemani, M. White, P. Votava, J. Glassy, J. Roads, and S. Running,
“Biospheric forecast system for natural resource management,” inProc-
ceedings of GIS/EM -4, 2000.

[5] M. Fox and D. Long, “PDDL 2.1: An extension of PDDL for expressing
temporal planning domains,”Journal of Artificial Intelligence Research,
2003.

[6] A.-M. Popescu, O. Etzioni, and H. Kautz, “Towards a theory of natural
language interfaces to databases,” inIUI , 2003.

[7] Y. Knyazikhin, J. Glassy, J. L. Privette, Y. Tian, A. Lotsch, Y. Zhang,
Y. Wang, J. T. Morisette, P. Votava, R. B. Myneni, R. R. Nemani,
and S. W. Running, “MODIS Leaf Area Index (LAI) and Frac-
tion Of Photosynthetically Active Radiation Absorbed by Vegetation
(FPAR) Product (MOD15) Algorithm Theoretical Basis Document,”
1999. http://eospso.gsfc.nasa.gov/atbd/modistables.html.

[8] A. Blum and M. Furst, “Fast planning through planning graph analysis,”
J. Artificial Intelligence, vol. 90, no. 1–2, pp. 281–300, 1997.

[9] K. Golden and W. Pang, “Constraint reasoning over strings,” inProceed-
ings of the 9th International Conference on the Principles and Practices
of Constraint Programming, 2003.

[10] K. Golden and J. Frank, “Universal quantification in a constraint-based
planner,” inProc. 6th Intl. Conf. AI Planning Systems, 2002.

[11] A. Lansky, “Localized planning with action-based constraints.,”Artificial
Intelligence, vol. 98, no. 1–2, pp. 49–136, 1998.

[12] S. Chien, F. Fisher, E. Lo, H. Mortensen, and R. Greeley, “Using
artificial intelligence planning to automate science data analysis for large
image database,” inProc. 1997 Conference on Knowledge Discovery and
Data Mining, Aug. 1997.

[13] J. Blythe, E. Deelman, Y. Gil, C. Kesselman, A. Agarwal, G. Mehta,
and K. Vahi, “The role of planning in grid computing,” inProc. 13th
Intl. Conf. on Automated Planning and Scheduling (ICAPS), 2003.

[14] K. Golden, “Leap before you look: Information gathering in the PUC-
CINI planner,” in Proc. 4th Intl. Conf. AI Planning Systems, 1998.

[15] A. da Silva, C. DeLuca, V. Balaji, C. Hill, J. Anderson, B. Boville,
N. Collins, T. Craig, C. Cruz, D. Flanigan, B. Hallberg, M. Iredell,
R. Jacob, P. Jones, B. Kauffman, E. Kluzek, J. Larson, J. Michalakes,
D. Neckels, W. Sawyer, E. Schwab, S. Smithline, Q. Stout, M. Suarez,
A. Tayanov, S. Vasquez, J. Wolfe, W. Yang, M. Young, and L. Zaslavsky,
“The Earth system modeling framework,” in3rd NASA Earth Science
Technology Conference, 2003.

[16] R. Ramachandran, S. Graves, H. Conover, and K. Moe, “Earth science
markup language,”Journal of Computers and Geosciences, 2003.

[17] S. Tanner, K. Keiser, H. Conover, D. Hardin, S. Graves, K. Regner,
R. Wohlman, R. Ramachandran, and M. Smith, “EVE: An on-orbit data
mining testbed,” inProceedings of the IJCAI workshop on Knowledge
Discovery from Distributed, Heterogeneous, Autonomous, Dynamic Data
and Knowledge Sources, Aug. 2001.

[18] M. Stickel, R. Waldinger, M. Lowry, T. Pressburger, and I. Underwood,
“Deductive composition of astronomical software from subroutine li-
braries,” inProceedings of the 12th Conference on Automated Deduc-
tion, 1994.

